
Perspectives in Education for Sound and 
Music Computing 

Federico Avanzini, Adriano Baratè, Goffredo Haus, Luca A. Ludovico, Stavros 
Ntalampiras, and Giorgio Presti 

LIM – Laboratorio di Informatica Musicale 	
Dipartimento di Informatica “Giovanni degli Antoni” 	

Universita` degli Studi di Milano 	
Via Comelico 39, 20135 Milano, Italy  

{federico.avanzini, adriano.barate, goffredo.haus, luca.ludovico,  
stavros.ntalampiras, giorgio.presti}@unimi.it 	

Abstract. In 2007, a document entitled “A Roadmap for Sound and Mu-
sic Computing”, authored by internationally renowned experts, aimed 
to identify, characterize and propose strategies for tackling the key re-
search challenges that this growing and diversified domain was expec-
ted to be facing in the next ten to fifteen years. The original idea was to 
establish a common agenda and ensure consolidation, integration and 
exploitation of research results from European initiatives and projects. 
Ten years later, we can reconsider those forecasts and check the achie-
vement of the expected results. Besides, considering recent technologi-
cal innovations and approaches (such as machine learning, artificial in-
telligence, etc.), we take a fresh look at sound and music computing 
education. The goal is to outline the characteristics required by acade-
mia and industries to future domain experts, who have to be multiface-
ted persons with interdisciplinary expertise including music, musicolo-
gy, math, physics, and computer science.  
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1.1 Introduction 

The idea of the present work originates from “A Roadmap for Sound and Music 
Computing” [1] (“Roadmap” hereafter), a detailed report released in 2007 and 
authored by internationally renowned experts aiming to identify, characterize and 
propose strategies for tackling the key research challenges that sound and music 
computing (SMC) was expected to be facing in the next ten to fifteen years. The 
Roadmap foresaw that, by 2020, music would have become a commodity as ubi-
quitous as water or electricity, and its content and the related activities would 
have promoted new business ventures, which in turn would have bolstered the 



music and cultural/creative industries. One of its major research goals was to sti-
mulate a fruitful interaction among culture, science and industry. Actually, many 
of the forecasts cited in the document have been realized thanks to the technolo-
gical advancement and the collaboration between research and development 
groups.  
The document had the merit of arousing interest within the scientific community, 
also eliciting some critical reactions. For example, [2] invited to consider additio-
nal topics concerning study and involvement in economic and policy analysis and 
stressed the importance of collaboration and tool building to support the discipli-
ne.  
The idea of declaring short, medium, and long-term SMC goals is at the base of 
other relevant initiatives, such as the 2007–2010 IRCAM research plan [3]. Publi-
shed in response to the Roadmap, it aimed to deliver an extensive and synthetic 
vision of the identified directions for the research at IRCAM.  
The subjects addressed in the mentioned reports included sound analy-
sis/synthesis, physical models, sound spatialization, computer-aided composition, 
and interdisciplinary transversal themes concerning different levels of music re-
presentations, the renewal of concepts underlying the management of time and 
interaction, and the elicitation and mediation of the musical knowledge.  
In the meanwhile, advances in technology have significantly impacted the way in 
which we produce and consume music, and SMC frontiers are rapidly evolving. 
For instance, sound design has been shifting and enlarging its scope to those con-
texts and applications where interactivity is of primary importance, thus origina-
ting a new discipline known as sonic interaction design [4]. The novel field of 
Unconventional Computing (UC), that aims to develop new types of computers, 
such as harnessing biological media to implement new kinds of processors, offers 
new possibilities to SMC [5]. In this context, it is worth citing the musical expe-
riments with Cellular Automata modelling and in-vitro neural networks under 
development at Plymouth University’s Interdisciplinary Centre for Computer 
Music Research, that are paving the way for interactive musical biocomputers.  
In this context, the research questions we will try to answer are: What are the 
characteristics that higher education should present in order to train the future 
experts in the SMC field? What are the competences and skills that the industry 
and the academia are expecting from them? How should an “ideal” university 
curriculum be conceived to foster these goals?  
We will try to answer these questions from two different perspectives: first, by 
analyzing the evolution of music and sound computing courses in the last 10 
years, thus pointing out the different trends followed by international institutions 
such as universities and research centers; second, by listing current approaches 
towards open problems and delineating the characteristics of the expert who 
should deal with them.  



1.2 Context 

The Roadmap emphasized the need for a tight link between SMC education and 
research, and called for a major effort in developing higher-education programs. 
Meanwhile, the implementation of the Bologna process in European countries has 
progressed, and the EHEA (EU Higher Education Area) has evolved towards a 
common structure of degrees [6]. This context and the related trends should be 
acknowledged in shaping SMC education.  
Employability of graduates should be one of the concerns of any highereducation 
program. Training should enhance employability of graduates by providing them 
with complementary and transferable skills aimed at facilitating their flow into 
the job market. SMC research has wide applicative implications, thus strong links 
with industry should naturally arise in training programs. Industrial partners 
should be involved in training programs, with the aim of broadening as much as 
possible skills related to technology transfer and entrepreneurship, thus widening 
the career prospects of students. Although the Roadmap acknowledges this, it 
does not contain a thorough need analysis for training programs in SMC.  
It should be kept in mind that the SMC research community is a small one. There-
fore the issue of SMC training must be situated in the broader context of neighbo-
ring and/or larger and/or more established academic disciplines. The latter que-
stion is relevant at all degree levels. Within more basic and general undergraduate 
degrees, topics related to SMC can still be successfully employed for educational 
purposes in foundational courses (e.g., insert elements of audio programming on a 
mobile device in a first-year java programming course). Within more specialized 
Master (or even PhD) degrees, SMC topics can be relevant to a number of related 
disciplines (HCI, robotics, etc.).  

1.3 Defining a Body-of-Knowledge 

The Roadmap contained preliminary work finalized at defining a set of “content 
areas”, meant to constitute core academic topics on which courses (or course modu-
les) in SMC may be built. This work should now be revised in the light of recent 
trends, and should be expanded and consolidated by the scientific community in order 
to define the Body-of-Knowledge (BoK) needed for an undergraduate or graduate 
SMC curriculum, course exemplars, and other guidelines.  
Similar guidelines are available for more established fields. A relevant example is 
provided by the curricula recommendations by ACM which, starting in the 1960’s [7], 
has collaborated with leading professional and scientific computing societies in va-
rious efforts to establish international curricular guidelines for undergraduate and 
graduate programs in Computer Science [8], Computer Engineering, Information 
Systems, Information Technology, and Software Engineering.  
Defining such a BoK for SMC curricula is a long-term goal which requires a coordi-
nated effort by the scientific community. The BoK should answer such questions as: 
what are core skills that an SMC graduate can exploit in the job market? What are the 
core topics that need to be present in a degree in our discipline? How can these be 



mapped into degree structures? How may SMC topics be applied to neighboring and 
more established academic disciplines? What are SMC referential textbooks?  
Related to this latter point, it should be noted that almost no foundational textbooks in 
SMC were available in 2007. A milestone dating back to 1996 and covering all 
aspects of computer music is the Computer Music Tutorial book [9]. Another notable 
exception, and a reference example, was the Digital Audio Effects book [10], now in 
its second edition (the first edition was released as early as 2002): it presents the state 
of the art in the field, involves leading researchers, includes extensive code examples 
(in MATLAB), has been and still is widely used for teaching.  
Ten years later the situation has changed to some extent. Many excellent textbooks 
have been published and are used for teaching. With no claim of being exhaustive, we 
can cite some examples regarding physically-based sound modeling [11], sound de-
sign [12], sonification [13] and sonic interaction design [14], machine learning for 
audio [15], music processing [16, 17].  

1.4 Higher Education Courses for Sound and Music Computing 

Appendix A of the 2007 Roadmap presented a survey of existing courses and curricu-
la in SMC around the EU, with the aim of analyzing trends in SMC education. The 
document collected relevant data for both single courses and entire curricula centered 
on SMC, covering a total of 170 courses and 40 curricula across 15 European coun-
tries. It is worth analyzing how the situation has changed in recent times. For this 
reason, we decided to conduct a new survey in order to provide an updated picture of 
higher education courses for SMC. Our analysis takes into consideration 22 undergra-
duate and graduate courses implemented by leading institutions worldwide. Between 
2007 and 2017, many subjects not only changed their name, but – more importantly – 
scope and goal. Thus, the original clustering needs to be slightly adjusted to compare 
the two corpora. Since these differences may lead the reader to biased observations, a 
10% confidence bar was added over the plot in Figure 1.1 to minimize this effect.  
The identified clusters, followed by examples of the corresponding subjects, are:  
•  C1. Acoustics – Acoustics of musical instruments, room acoustics, acoustic phy-

sics;  
•   C2. Audio signal processing and modeling – Systems, sampling and quantization, 

spectral and time-spectral representations, digital filters, models for sound synthe-
sis, physics-based modeling, digital audio effects, spatial sound and virtual acou-
stics;   

• C3. Hardware and software systems – Sensors and actuators, real-time systems, 
output devices, software platforms, software engineering;   

• C4. Interaction and design of multimodal interfaces – Performance analysis, emo-
tion and expression in music performance, computational models and control of 
music performance, multimodal perception and action, gesture and multisensory 
analysis and synthesis, representations of multisensory data, control mappings and 
interaction strategies, evaluation of interaction models, digital and virtual musical 
instruments, interactive performing arts, interactive installations, education, enter-
tainment, multimedia and new media, therapy and rehabilitation;   

• C5. Music information retrieval and sound analysis – Including: auditorybased 



audio signal processing, perceptual coding, content-based audio processing and 
audio descriptors, content description/transmission languages, content-based tran-
sformation, feature extraction/classification, automatic transcription, music infor-
mation retrieval, computer assisted composition;   

• C6. Systematic musicology – Music semiotics, score analysis, computational mo-
dels for music analysis;   

• C7. Music perception and cognition – Psychoacoustics, music perception, compu-
tational approaches and models, sound-based cognition, music cognition, artificial 
intelligence;   

• C8. Sound design and auditory display – Auditory warnings, sound in interaction 
design, sonification, sound design.   

 

 
 

Fig. 1.1. Current balance between core SMC topics and background disciplines. 

Figure 1.1 shows some surprising effects, such as the significant reduction of topics 
like music information retrieval and digital signal processing. A possible explanation 
is that the in-depth theoretical investigation occurred in the past is now leaving room, 
in terms of resources, to engineering and implementation aspects. Additional conside-
rations are postponed to the next section.  Please note that some theoretical and tech-
nological evolutions, envisioned in the Roadmap just as research trends under deve-
lopment, matured in the last decade. These include novel methodologies for systema-
tic musicology (C6), machine learning and deep learning (C5 and C7), interactive 
sound for virtual and augmented reality (C4). We discuss in the detail these trends in 
the next section. Other emerging trends, mentioned but not deeply investigated by the 
Roadmap, concern music-oriented biomolecular automata (C3), and intersections with 
neurosciences (C7).  It is worth underlining that the 2007 survey deliberately ignored 
some areas supposedly not relevant in SMC, being either too general or too far from a 
strict vision of the domain. Nevertheless, nowadays they are considered key subjects 
for the comprehensive education of an SMC expert. Additional subject areas may 



include:  	
• C9. Music and sound technology, dealing with multimedia-oriented generalpurpo-

se technologies, like MIDI, music coding approaches, and mobile app program-
ming;   

• C10. Audio production and post-production, investigating such processes with the 
aim of improving available software tools and being able to conduct a more in-
formed analysis of audio signals;   

• C11. Communication, multimedia publishing and law, providing a marketoriented 
vision of SMC activities;   

• C12. Sociology of music, focusing on social aspects of musical behavior and the 
role of music in society;   

• C13. Music theory, composition and instrument studies, providing musical trai-
ning and knowledge;   

• C14. Computer science core subjects, aiming to improve basic IT skills and know-
ledge;   

• C15. Math, physics and statistics, strengthening the foundations of the STEM 
(Science, Technology, Engineering and Mathematics) area where students often 
exhibit gaps in their previous knowledge.   

 

	
 

Fig. 1.2. Distribution of SMC core topics and background disciplines (including new content areas C9–
C15) in the surveyed university programs. 

From this revised list of skills and competences, the richness of the expected educa-



tion for an SMC expert clearly emerges. Figure 1.2 shows the balance of clustered 
subjects including the areas listed above. Nowadays, mastering only topics closely 
linked to SMC fields is not enough, rather it is necessary to have multiple skills and 
fluently speak the languages of music, mathematics, physics, and informatics. 	
Needless to say, it is very difficult to condense everything into a 5-year university 
degree, especially if the curriculum must be organized in a coherent 3+2 structure. 
Such a problem has been tackled in a number of ways by different institutions. For 
example, the Department of Signal Processing of the Helmut Schmidt University, 
Hamburg offers an educational program composed by 50% of acoustics and DSP 
subjects and 50% of scientific topics not directly related to music. Conversely, the 
University of Ghent focuses its Bachelor and Master degrees on creative disciplines, 
treating also cognitive music psychology, publishing-related and legal aspects. Final-
ly, it is worth mentioning the case of the University of Milan, which offers one of the 
few undergraduate programs in Music Informatics.  

1.5 Emerging Directions in SMC Research and Education 

The comparison summarized in Fig. 1.1 shows that some content areas have been 
increasingly addressed in SMC curricula in the last 10 years. Courses in the area of 
systematic musicology (C6) have increased, similarly to those coming from the areas 
of sound design, interaction and multimodal interfaces, and – although to a lesser 
extent – perception and cognition. 
One possible explanation of this trend is that emerging research directions related to 
these areas have gained momentum in the last decade. This correlation emphasizes the 
tight link between SMC education and research. In the remainder of this section we 
discuss recent and current developments of such research, and its implications on 
SMC education, emphasizing interconnections among content areas.  

1.5.1 Music and Musicology Oriented education 

Here we address the broad content area of systematic musicology and investigate the 
challenges that an SMC expert has to face when dealing with problems typical of 
music and musicology. Specifically, we will address the evolving fields of music 
notation, computational musicology, and computerassisted composition.  
Concerning music notation, finding the most suitable way to encode score symbolic 
content in the digital domain is a fundamental goal, not only for transcription and 
printing purposes, but also to preserve, analyze, rework, and enjoy music information 
in novel ways. In the early 2000s, XML-based proposals began to emerge, coupling 
the advantages of plain text with the possibility to structure information in a hierar-
chical way, to make it easily readable by both humans and machines, and to extend 
supported elements when required [18]. In this sense, it is worth citing IEEE 1599, 
Music Encoding Initiative and MusicXML. In more recent times, the World Wide 
Web (W3C) consortium has launched the Music Notation Community Group1, an 

                                                             
1 https://www.w3.org/community/music-notation/  



initiative that aims to unify formats syntactically and semantically different in order to 
establish the guidelines for a standardized approach over the Web. Ten years after the 
approval of the IEEE 1599 format as an international standard in 2008, the goal is still 
the creation of a commonly-accepted music representation format able not only to 
encode notation in all its forms, but also to integrate the other layers music informa-
tion is made of [19], such as graphical and audio aspects. This idea, already contained 
in the original IEEE 1599 proposal, is the core of the MNX format currently under 
development by the W3C Music Notation Community Group2.  
An expert of music notation in the digital domain has to master multiple competences 
and skills, including the capability to read and understand different kinds of notation 
(music theory skills, cluster C13), transcribe them through already available computer 
programs (user skills, cluster C9), develop new software tools when the existing ones 
are not sufficient (programming skills, cluster C14), and above all thinking in a multi-
layer way (openmindedness). Moreover, the concept of multi-layer representation of 
music information, taken to the extreme, can involve even more areas, such as cluster 
C4 to offer an effective user experience, C5 concerning music information retrieval, 
C6 to extract structural information through music analysis, and C11 to understand 
the impact of new multimedia products over the market [20].  
Concerning computational musicology, many mathematical and algorithmic approa-
ches could be mentioned. A recent trend is the adoption of the Tonnetz, a graph used 
in computational musicology to describe the harmonic relationships of notes in equal 
tuning [21]. Figure 1.3 shows a graphical representation of a Tonnetz, originally in-
troduced as a 3 × 4 matrix, where values represent pitch classes, and the matrix itself 
shows their relationships. This model has been largely generalized to several formali-
sms, one of them interprets it as a simplicial complex.  
In order to capture both the temporal and harmonic information encoded in a musical 
phrase, an associated Tonnetz can consider the played notes together with their dura-
tion and repetition, linking to each vertex of the Tonnetz a non-negative real number 
that represents how long the associated pitches have been played during the execution 
of the phrase. In this case a metric representation of music as a planar polyhedral 
surface is obtained [22]. The musical meaning of this topological representation of 
music can be applied to music analysis and classification [23].  
As demonstrated by the example above, the expert who wants to master modern mu-
sicological approaches and techniques has to acquire knowledge in different fields, 
such as C5, C6 and C13, presenting also a strong background in the C15 area.  
  
 

                                                             
2 https://www.w3.org/community/music-notation/2016/05/19/introducing-mnx/  
 



 
Fig. 1.3. A finite subcomplex of the Tonnetz T. 

Even in more “traditional” contexts, such as the formalization of music structures and 
computer-assisted composition, multiple skills are required. An example of in-use 
formalism is represented by Petri nets, an abstract and formal approach that aims to 
capture the dynamic behavior of a system with asynchronous and concurrent activities 
[24]. This model can be viewed as a directed bipartite graph with two kinds of nodes: 
transitions (i.e. events that may occur), graphically represented through rectangles, 
and places (i.e. conditions), drawn as circles. Transitions are linked to places, and vice 
versa, by directed arcs, that describe which places are preand/or post-conditions for 
which transitions. Places in a Petri net contain a number of marks called tokens, while 
the upper limit of tokens that a given place can host represents its capacity. The cur-
rent place marking and its capacity are conventionally indicated by an upper and a 
lower number in the circle, respectively. An example of graphical representation is 
shown in Fig. 1.4.  
 

 
 

Fig. 1.4. An example of a Petri Net model. 

 



When there are sufficient tokens in all of input places of a transition and there is suf-
ficient room in all of its output places to host newly generated tokens, the transition 
may fire, subtracting tokens from the input places and creating tokens in its output 
places. Thanks to their characteristics, Petri nets are well suited for modeling the be-
havior of distributed systems. The modeled processes can include choice, iteration, 
and concurrent execution [25].  
A specific extension of Petri nets has been created for music applications. In Music 
Petri Nets (MPNs), music objects are hosted by places, and are played when a token is 
received; transitions can contain musical operators that alter the music objects in input 
places and put these modified objects into output places. A music object can be seen 
as anything with musical meaning, e.g. a single note, a fragment of music, a control 
signal, etc. Music operators apply transformational algorithms such as transpositions, 
inversions, and time stretching. MPNs have been applied both to the analysis of exi-
sting music [26] and to composition and musical expression [27].  
In order to master Petri nets and other formal models aiming to both represent and 
manipulate music structures, skills in cluster C13 are not sufficient; rather, a mathe-
matical (C15) and computer-science (C14) background are required to understand 
how these formalisms work and to fully exploit their potential.  

1.5.2 Education in Computational Auditory Scene Analysis 

Submit your manuscript electronically for review.  
One more trending direction in SMC research is connected to the area of music per-
ception and cognition (C7), although the scope has been more and more broadened to 
include non-musical sound. Specifically, an expected outcome of SMC education will 
be a thorough understanding of the scientific domain often called Computational Au-
ditory Scene Analysis (CASA). It aims at a complete description of the space of inte-
rest based solely on the acoustic modality. To this end, CASA entails the following 
four components: a) localization, b) enumeration, c) separation, and d) recognition of 
the encountered acoustic sources. These are interconnected since the efficacy of one 
component might be directly or indirectly related (either boosted or degraded) to that 
of anothers.  
CASA has a wide range of applications, which may include the following:  
• Voice Activity Detection, where the main goal is to segment the audio flow into 

speech and non-speech chunks for boosting a speech/speaker recognition system; 
• Processing of musical signals, such as music transcription, identification of music 

genre, recognition of performer, indexing and retrieval of musical data, etc. [28, 
29, 30];   

• Processing of bioacoustic signals, where animal vocalizations are used towards 
tasks such as tracking of animals, monitoring of endangered species, biodiversity 
indexing [31] etc.;   

• Machine acoustics, which elaborates on acoustic signals emitted by solids (e.g. 
metal, rock, ceramic etc.) when they are subjected to stress. Potential applications 
include non-destructive testing, fault detection and function control, maintenance 
services [32] etc.;   

• Context recognition, which encompasses the recognition of the physical environ-



ment around a device including detection and identification of relevant sound 
events as well as recognition of the activity of the user [33, 34].   

	
The underlying assumption is that every sound source exhibits a consistent acoustic 
pattern, thus a characteristic energy distribution of its frequency content. Consequent-
ly, the aim is to represent and model such distributions as accurately as possible. To 
this end, one needs to employ feature extraction and pattern recognition algorithms. 
Both processing parts are significant and have an immediate effect on the final reco-
gnition framework. On one hand, features able to capture the structure of the signals 
at hand are essential towards pattern discovery. On the other hand, algorithms able to 
model the extracted features and subsequently identify them on novel data are of pa-
ramount relevance for reliable sound recognition.  Naturally, such systems need ope-
rating under real-world conditions; nonetheless there are several difficulties along this 
path. The system needs to deal with a large number of different sound sources, where 
usually the overall performance degrades. Some sound sources might not be known a-
priori and as such the respective model is inexistent. Such situations need to be dealt 
in an online manner, thus increasing the level of difficulty. Another problem concerns 
the categorization of sounds into distinct classes, since sometimes it is not uniquely 
leading to one class overlapping with one or more. Finally, complex sound scenes 
where many sound sources are active simultaneously could be extremely hard to ana-
lyze. Due to these reasons, the approaches existing in the literature have targeted con-
strained problems and a system with generic applicability remains an open research 
subject.  
Figure 1.5 depicts the standard structure of a sound recognition system able to iden-
tify N sound classes. Typically, the audio signal passes through a pre-processing step 
(mean removal and gain normalization) before it is parameterized. There, the signal is 
framed into small parts where the feature extraction methodology operates. The clas-
sifier concludes the sound recognition systems. Currently employed classifiers can be 
divided to two categories: discriminative and non-discriminative [35].  
 

 
Fig. 1.5. A sound recognition system as regards to classification of N sound categories. 

The first class aims at estimating the boundaries between the categories in the high 
dimensional space of the features. Some examples are the Polynomial Classifier [36], 
Multi-Layer Perceptron [37], Support Vector Machines [38], and more recently, Deep 
Learning [39]. On the contrary, generative approaches try to approximate the underly-
ing distribution of the training data. These include Gaussian mixture models (GMM) 
[40], hidden Markov models (HMM) [41] and probabilistic neural networks (PNN) 



[42]. Other non-discriminative approaches are the k-nearest neighbors (KNN) [43] 
and the learning vector quantization [44]. Additionally, several hybrid classification 
schemes have been reported in the literature [45, 46].  
A promising future research directions is transfer learning for audio analysis: a typical 
assumption is that the training and future data must lie within the same feature space 
and have the same distribution. However, in many realworld applications, this assu-
mption may not hold. For example, we sometimes have a classification task in one 
domain of interest, but we only have sufficient training data in another domain of 
interest. In such cases, knowledge transfer, if done successfully, would greatly impro-
ve the performance of learning by avoiding much expensive data labeling efforts. In 
recent years, transfer learning has emerged as a new learning framework to address 
this problem, however is not yet exploited in the field of computational audio analy-
sis.  
One further research direction is concerned with learning in non-stationary environ-
ments, where the underlying phenomena change over time [47]. Examples of these 
applications include making inferences or predictions based on acoustic sensor net-
works, monitoring of biodiversity, acoustic surveillance, etc. In non-stationary envi-
ronments the probability density function of the datagenerating process may change 
(drift) over time. Therefore, the fundamental and rather naive assumption made by 
most computational intelligence approaches – that the training and testing data are 
sampled from the same fixed, albeit unknown, probability distribution – is simply not 
true. Learning in non-stationary environments requires adaptive or evolving approa-
ches that can monitor and track the underlying changes, and adapt a model to accom-
modate those changes accordingly.  
The above discussion shows that an expert of computational auditory scene analysis 
has to master multiple competences and skills, including substantial fluency in audio 
signal processing and modeling (cluster C2) and in related problems of acoustics (e.g., 
room acoustics, cluster C1), as well as audo processing techniques specifically focu-
sed on feature extraction (cluster C5). General issues related to machine learning call 
for a solid background in core computer science subjects (cluster C14), as well as in 
maths and statistics (cluster C15).  

1.5.3 Education on Interactive Sound and Auditory VR/AR 

Here we address the broad content area of interaction and design of multimodal inter-
faces, which intersects with clusters C4 and – to a minor extent – C8. Specifically we 
show how current developments in Virtual Reality (VR) and Augmented Reality (AR) 
are providing a substantial boost to SMC research related to interactive and immersi-
ve 3D sound.  
Research on VR [48] and AR [49] have been going on for decades. Ten years after the 
Roadmap, we now are at a turning point where this research is finally reaching out to 
real-world applications. This is mainly due to the advent of low-cost, helmet-style VR 
systems that are capable of rendering complex stereoscopic 3D visual scenes (both 
dedicated helmets like the Oculus Rift and, more recently, smartphone-based VR 
systems). Big players (Google, Samsung, etc.) are developing their own VR ecosy-
stems, and it is easy to predict that AR will be next (the Microsoft HoloLens techno-



logy is a good example of this trend). Application scenarios span a wide range, inclu-
ding gaming and entertainment (personal cinema, multi-channel downmix over 
headphones), real world human interaction, sensory substitution devices for visually-
impaired users, human-robot interaction.  
 

 
Fig. 1.6. A general scheme of a “HRTF selection” approach. 

Immersive VR/AR call for multimodality, since properly designed and synchronized 
auditory and haptic displays are likely to provide a much greater sense of immersion 
in a virtual environment than a high-fidelity visual display alone. Immersive 3D audio 
rendering has huge potential both for VR [50] and AR [51], and can exploit off-the-
shelf hardware such as acoustically transparent (hear-through) headphones [52], head-
tracking sensors, 3D cameras that simultaneously capture spherical video and sur-
round sound.  
Most of current 3D sound rendering techniques over headphones rely on the use of 
so-called Head-Related Transfer Functions (HRTFs, or their timedomain counterparts 
Head-Related Impulse Responses, HRIRs) [53], i.e. filters that capture the acoustic 
effects of the human head and ears and allow simulation of the audio signal at the 
entrance of the ear canal as a function of the sound source’s spatial position. These 
filters can be combined with other environmental acoustic effects into the so-called 
Binaural Room Impulse Responses (BRIRs), for given source and listener positions. 
Convolving an appropriate BRIR (for left and right ear) with a monaural virtual sound 
recreates the listening experience of the same sound as emitted from a real source at 
the position defined by the BRIR.  
One of the main current limitations of binaural audio lies in the lack of individualiza-
tion of the rendering process. Since the recording of individual HRTFs is both ti-
meand resource-expensive, different and more convenient ways to obtain or simulate 
them are desirable. A common practice amounts to employing a single predefined 
HRTF set for any possible listener (i.e. recorded on dummy heads shaped with avera-
ge anthropometric data, such as the KEMAR mannequin [54]). However, individual 
anthropometric features of the human body affect substantially the acoustic features 
of the HRTFs, therefore personal functions should be used in order to achieve high-
quality rendering.  
One recent trend concerns the investigation of innovative approaches for personaliza-
tion of HRTFs, i.e. approaches that allow to provide a listener with a HRTF set that 
matches as closely as possible the perceptual characteristics of his/her own individual 



HRTFs. Personalized HRTFs can be derived from computational models, which gene-
rate synthetic responses from a physical or structural interpretation of the acoustic 
contribution of head, pinna, shoulders and torso [55]. In alternative, personalization 
can be also achieved through “HRTF selection” (see Fig. 1.6). In this case, persona-
lized HRTFs are chosen among the HRTF sets available in a database, by finding the 
“best” match between the listener and one of the subjects in the database based on 
individual anthropometric features. One the main problems to be tackled is the lack of 
large amount of data to train statistical models: available HRTF datasets are characte-
rized by sparsity and heterogeneity [56]. However the recent advent of new common 
formats for data representation mitigates this problem and facilitates access to hetero-
geneous HRTF data.  
A related applied research direction is concerned with the design of novel musical 
interfaces. In this context, one of the key ingredients to achieve a truly immersive and 
multimodal interaction with the virtual instrument is seamless 3D audio, that simula-
tes the spatial characteristics of the instrumental sound as if it were immersed in the 
real environment. In particular, an emerging buzzword is that of Virtual Reality Mu-
sical Instruments – VRMIs [57]. This scenario calls for a set of enabling technologies 
(personalized binaural rendering, transparent AR headsets), and for additional re-
search in terms of implementation on mobile architectures, measurements and collec-
tion of acoustic data from real instruments, evaluation of user experience.  
An expert in interactive and immersive sound has to master core subjects in clusters 
C1 and C2. Perceptual and cognitive aspects (area C7) are paramount too, and notably 
include the development and use of computational models of the human auditory 
system, which can be used to develop perceptually motivated metrics of validation 
[58, 59]. Finally, the tools and the methodologies typical of this research have a large 
intersection with other fields of computer science (cluster C14), namely computer 
graphics and computer vision, as well as HCI.  
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