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Abstract. This paper proposes a preprocessing technique for the auto-
matic transcription of performances produced by a musical instrument
(or other sound source) capable of timbre variations. Voice recognition
techniques will be exploited to gather information about timbre, then a
clustering approach will be used to reduce data cardinality, and, finally,
data dimensionality will be further reduced using multi-dimensional scal-
ing to create labels as points in a data-driven timbre-space. A graphical
visualization of the achieved results will be implemented in order to
verify the achievement of the initial requirements. A MATLAB toolkit
performing the operations described in this paper is publicly available to
test the e↵ectiveness of the proposed approach.
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1 Introduction

The automatic transcription of a musical performance from its audio recording is
a relevant goal in sound and music computing. Already addressed in a number of
scientific works, from many points of view it is still considered an open research
problem.

Concerning the state of the art, di↵erent approaches have been experimented.
As a criterion to group reference literature, we considered the kind of informa-
tion they start from, thus identifying 2 categories: pitch-based approaches and
timbre-based techniques. In this context, the term timbre refers to the nuances
and colorations of the overall spectral profile, rather than the actual harmonic
structure only distinguishing di↵erent instruments. In this way, we can also dis-
tinguish among timbral modulations produced by the same sound source.

The former category mainly addresses polyphonic music and includes pro-
posals based on pitch tracking (e.g., [8] and [9]), pitch salience and MIDI rep-
resentations (e.g., [15] and [16]), and the detection of musical structures (e.g.,
[10]). For our purposes, a particularly relevant research is the one described in
[14], aiming at the automatic transcription of piano music by first assigning a
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pitch-based label to each audio frame, and then applying hidden Markov models
(HMMs).

The latter category focuses on timbre-based approaches. Given the aforemen-
tioned definition of timbre, we are not considering those research works based
only on the distinction among stochastic and deterministic spectrum compo-
nents, such as [17]. Conversely, our survey embraces works addressing timbre as
coarse spectral profile. Articles compliant with this definition include the auto-
matic transcription of drum loops based on onset detection, feature extraction
and classification through HMMs and support vector machines (SVMs) [4], pos-
sibly analyzing also audiovisual features [5], and the transcription of expressive
oral percussive performances with a similar approach [6].

In addition, it is worth citing review papers which analyze the limitations
of current methods and identify directions for future research. Promising ap-
proaches include the combination of several processing principles and the ex-
traction of various types of musical information (such as the key, metrical struc-
ture, and ensemble) to feed that into a model that provides context for the note
detection process. Examples falling into this category are [12], [2], and [3].

These lists do not claim to be complete. Rather, the mentioned papers should
be considered as the reference literature we have analyzed to formulate a novel
approach, originally conceived only for monophonic and single-pitch musical in-
struments and afterwards extended to cover other categories of sound sources.

Our proposal is similar to timbre-based techniques, with some noticeable
di↵erences:

– Known techniques mainly use mel-frequency cepstral coe�cients (MFCCs),
timbral features and spectral bands. Conversely, our proposal explores the
adoption of linear predictive coding (LPC) and real cepstral coe�cients,
since these DSP techniques do not involve perceptual aspects. In any case,
thanks to the modularity of our approach, this analysis procedure can be
substituted by MFCCs with a very limited impact on code;

– Common approaches in literature adopt classifiers such as HMMs, SVMs,
and other machine learning techniques, while we will propose hierarchical
clustering and multidimensional scaling in order to reduce data dimension-
ality with no prior information about classes;

– In the process of extraction of musical information we explicitly focus on
timbre, where other proposals privilege key, ensemble, structure, and so on;

– The idea of using labeling in the process of automatic transcription is not
completely new; for instance, it was experimented in [14]. Nevertheless, the
adoption of labels based on timbre rather than pitch is quite original. Please
note that we are going to talk about labels instead of features as they do not
present any musical meaning.

In this context, we started developing an algorithm to simplify the task of
automatic transcription. Initially, the audio track to be analyzed had to contain
the sound of a single, monophonic instrument, capable of timbre variations.

The original approach could be applied both to pitched and to non-pitched
musical instruments. For a non-pitched instrument (also known as unpitched,
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indefinite-pitch or untuned instrument), no discernible pitch can be heard. Many
non-pitched instruments are part of the percussion family, such as snare drums,
crash cymbals, whistles, maracas, cowbells, and triangles. Many non-pitched
instruments do or can produce a sound with a recognizable fundamental fre-
quency, thus becoming pitched. Similarly, pitched instruments can be modified
or deliberately played in order to produce unpitched sounds, as for prepared
piano performances. Even if the technique proposed here is timbre- rather than
pitch-based, it could to be able to enhance pitch detection, in accordance with
the results described in [10].

In particular, we selected the jew’s harp as a monophonic instrument capable
of multiple and heterogeneous timbral e↵ects. The jew’s harp is a lamellophone
instrument in the category of plucked idiophones, which may consist of a flex-
ible metal or bamboo tongue or reed attached to a frame. The tongue/reed is
placed in the performer’s mouth, between the lips of the player, and plucked
with the finger to produce a note (see Figure 1). The sound is then amplified
and modulated by the player’s skull and mouth cavities.

The jew’s harp – also known in English as the jaw harp, juice harp, mouth
harp, Ozark harp or trump – is a traditional musical instrument that belongs
to many di↵erent cultures and traditions, as demonstrated by the high num-
ber of names it can assume: guimbarde in France, Maultrommel in Germany,
scacciapensieri in Italy (with many regional variants, such as marranzanu in
Sicily, malarruni in Calabria, trunfa in Sardinia), koukin in Japan, munnharpa
or munnharpe in Norway, morsing in South India, changu in the Sindh province
of Pakistan, xomus or khomus in the Tyva Republic and the Sakha Republic in
Russian Federation, and so on.

We are particularly interested in this instrument due to the wide range of tim-
bre e↵ects it can produce through ad-hoc playing techniques, including tremolo,
vibrato, articulation by breathing and with the tongue. An early experimenta-
tion of our algorithm has been conducted on jew’s harp performances, in order to
benchmark the results of the algorithmic computations. The resulting achieve-
ments will be discussed in the following.

2 The Proposed Approach

From a broad perspective, the complete process bringing from sound analysis to
score transcription should consist in 5 steps:

1. Pre-processing of the input to optimize the dataset;
2. Labelling of small frames according to timbral properties;
3. Classification of segments based on labels sequences and onset timings;
4. Binding of segments to gesture symbols;
5. Reconstruction of rhythmic notation.

In this work – focusing on annotation rather than transcription – we will
discuss only the first two steps, which bring from the analysis of an audio signal
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Fig. 1. Khomus players strucking the instrument between their lips.

to the recognition of a sequence of well-defined sound entities. The aggrega-
tion of sound entities into meaningful music events and their translation into
instrument-specific notation would require the availability of ground-truth data
and will be matter of future works, as explained in Section 3.

2.1 Input Preprocessing

Fig. 2. Preprocessing operations.

When analyzing signal, it is a common practice to perform some preprocess-
ing operation (see Figure 2), especially when big datasets need to be inspected
and a reasonable processing time is required.

First of all, the loaded performance is converted into a monophonic signal,
since stereo information brings an increase of complexity which is not necessarily
bound to an increase of performance.
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In [11] the authors suggested that sample rate, in a complex polyphonic con-
text, can be drastically reduced from 44.1 kHz down to 11.025 kHz a↵ecting
music-similarity computation results by a limited amount, but allowing to sig-
nificantly save computing resources. Similarly, the relevant part of the spectrum
for preserving voice intelligibility is the band up to 4-5 kHz, as evidenced by
the fact that in voice-recognition applications higher frequencies are usually dis-
carded. This approach can be applied to our scenario as well, by downsampling
the signal to 11.025 kHz.

At this point, the signal has been subdivided into overlapping frames that are
analyzed independently as small segments of a sound event. Concerning speech
recognition, the typical window size for this segmentation task is about 20 ms
long, with an overlap of less than half frame. For our purposes empirical tests
showed that a window size of about 25 ms with an overlap of 1/2 of the window
produces good results. Nevertheless, a fine tuning of these parameters will be
performed once the whole synchronization algorithm is complete.

Finally, a normalization of each frame is called for to bring all signals to the
same variance scale.

2.2 Clustering Small Frames by Timbral Properties

Clustering is performed upon timbral properties, and the steps of the process
are shown in Figure 3.

Fig. 3. Clustering operations.

Timbral properties are extracted as cepstral coe�cients of the autoregressive
(AR) model of each frame. Both Yule-Walker and modified covariance methods
were adopted to compute AR coe�cients, with no significant di↵erence, so Yule-
Walker was chosen [7]. As an optimal number of coe�cients, literature suggests
an order N = 1 + 0.001 · fs, where fs is the sample rate. In this case, N = 12.
To test if this rule of thumb applies to our scenario, a Minimum Description
Length (MDL) test is run over each frame of a reference audio recording for the
musical instrument to track. Results are illustrated in Figure 4, where gray lines
show the scores of di↵erent frames, while the minimum score of each frame is
highlighted by a pale blue dot. The closer to the median behavior a line is, the
darker it gets.

According to MDL, most frames are best modeled with an order N 2 [6 . . . 17].
Figure 5 highlights the frames correctly explained by the rule of thumb of N = 12
through areas of di↵erent color, and those left unexplained by choosing N = 17.
Thus, an order N = 17 is su�cient to model 95% of the frames.
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Fig. 4. Results of a Minimum Description Length (MDL) test over each frame of a
reference recording.
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Fig. 5. Percentage of reference frames correctly modeled (above) and the corresponding
signal envelope over time (below).
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Residual autocorrelation for p = 17
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Fig. 6. Autocorrelation function of the residuals of all frames using 17th order models.
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Fig. 8. The input spectrum and the extracted features: the spectral envelope based on
autoregressive modeling, and cepstral coe�cients respectively.

The autocorrelation function of the residuals is inspected to be sure that the
selected order whitens the signal properly. Results are shown in Figure 6, where
those residuals close to the median behavior are darker. Dashed lines contains
95% of the frames, whereas white Gaussian noise is contained almost entirely
between the horizontal dotted red lines. Peaks near ± 100 samples lag are relative
to the recording pitch.

Since Figure 6 highlights peaks in correspondence with the fundamental fre-
quency of the khomus reed, a visual inspection is performed to be sure that no
poles are wasted by tracking it. In the example adopted here and illustrated
in Figure 7, the fundamental frequency is f0 = 57.96 Hz, corresponding to a
slightly detuned A].

The features extracted from LPC coe�cients are: the cepstral coe�cients
(CCs), and the magnitude of autoregressive coe�cients frequency response
(ARMs). The former feature is used for the clustering task, whereas the lat-
ter for labeling purposes. In particular, CCs are limited to the first 12 elements;
element 1 is discarded, too, being related to the overall energy of the frame. This
step is shown in Figure 8.

Frames are finally clustered together based on CCs, using an agglomerative
hierarchical clustering strategy run over each performance. The main idea is to
discretize the stream of frames, or – in other words – to reduce the dimension-
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Fig. 9. Dendrogram of the clusters based on cepstral coe�cients.

ality of CCs from 11 real values to 1 class, based on n-dim Euclidean distance.
The number of symbols can be chosen so as to match the number of expected
timbral classes. Results can be represented through a dendrogram of the cep-
stral coe�cients computed on the reference recording. In the case of Figure 9,
the tree has been cut to present 25 clusters, corresponding to the number of
timbral classes expected for this example. These clusters are the input for the
next steps of the transcription process.

The pairwise log-spectral distance of cluster centroids is used to run multi-
dimensional scaling and gather 3 scores for each of them (represented in Figure
10).

The 25 resulting clusters are described by triplets of numbers that can be used
as a single label. The calculation of MDS over centroids makes the 3 dimensions
preserve cluster similarity in the form of Euclidean distance. Nevertheless, equal
labels coming from di↵erent music pieces could imply very di↵erent timbres. In
order to solve this problem, it is possible to calculate MDS over the centroids of
the whole dataset instead of focusing on single pieces.

For the sake of clarity, it is worth stressing that labels are not features, i.e.,
they do not carry any musical information, rather they reflect timbre similarities
inside the dataset on which MDS is run.

Finally, the music work described by this sequence of labels can feed a
pattern-recognition system, which represents the third step of the 5-stage tran-
scription process described above.
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Fig. 10. Cluster centroids in the Multi-Dimensional Scaling subspace.

2.3 Visualization process

In order to test the validity of the aforesaid steps, a visualization strategy – which
sub-steps are shown in Figure 11 – was implemented to evaluate performances
in absence of ground-truth data.

Labels, i.e. MDS scores, were first normalized and then used as RGB values
to color each frame on the base of the cluster it belongs to. Needless to say, labels
could be represented through characters or any other symbolic representation
instead of colors, but decoding symbols during real-time listening would be less
human readable.

In this way, similar frames should have similar colors, and unique sounds
should appear as similar for each instance in the performance, as intuitively
shown in Figure 12.

Some videos presenting the results of the algorithm when applied to het-
erogeneous sound sources – including the mentioned jew’s harp performance
– can be found at the following URL: http://www.lim.di.unimi.it/demo/

labelSignal.php

Fig. 11. Visualizing operations.
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Fig. 12. Input spectrum (above) and color coded frames (below): similar frames present
similar colors.

3 Future Work

Recalling the 5-step process described in Section 2, stage 3 – namely the clus-
tering of the segments obtained so far in order to create meaningful sequences of
labels and to produce onset timings – could be realized exploiting onset-detection
techniques such as the ones described in [1] and [13]. A promising way to realize
stages 4 and 5 is the one based on hidden Markov model (HMM) networks. This
approach has been already adopted in some of the works mentioned in Section 1.

4 Conclusion

An approach to the automatic annotation of khomus performance has been pre-
sented, adopting preprocessing techniques and a qualitative evaluation strategy
based on data visualization. Results seem promising so far, but a validation of
the complete 5-step process and a fine tuning of the algorithm parameters will
be performed when datasets accompanied by ground-truth score transcriptions
will be available.

The MATLAB code implementing the algorithms described in this paper
is available on GitHub at the following URL: https://github.com/LIMUNIMI/
labelSignal. On the one side, this allows a user to replicate the tests performed
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by the authors, and on the other side to experiment with other sound files and
parameter settings.
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